Edge-bipancyclicity of conditional faulty hypercubes

نویسندگان

  • Lun-Min Shih
  • Jimmy J. M. Tan
  • Lih-Hsing Hsu
چکیده

Xu et al. showed that for any set of faulty edges F of an n-dimensional hypercube Qn with |F | n− 1, each edge of Qn − F lies on a cycle of every even length from 6 to 2n, n 4, provided not all edges in F are incident with the same vertex. In this paper, we find that under similar condition, the number of faulty edges can be much greater and the same result still holds. More precisely, we show that, for up to |F | = 2n− 5 faulty edges, each edge of the faulty hypercube Qn − F lies on a cycle of every even length from 6 to 2n with each vertex having at least two healthy edges adjacent to it, for n 3. Moreover, this result is optimal in the sense that there is a set F of 2n− 4 conditional faulty edges in Qn such that Qn − F contains no hamiltonian cycle. © 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pancyclicity and bipancyclicity of conditional faulty folded hypercubes

A graph is said to be pancyclic if it contains cycles of every length from its girth to its order inclusive; and a bipartite graph is said to be bipancyclic if it contains cycles of every even length from its girth to its order. The pancyclicity or the bipancyclicity of a given network is an important factor in determining whether the network’s topology can simulate rings of various lengths. An...

متن کامل

Edge-fault-tolerant edge-bipancyclicity of hypercubes

In this paper, we consider the problem embedding a cycle into the hypercube Qn with existence of faulty edges and show that for any edge subset F of Qn with |F | n− 1 every edge of Qn − F lies on a cycle of every even length from 6 to 2n inclusive provided n 4 and all edges in F are not incident with the same vertex. This result improves some known results.  2005 Published by Elsevier B.V.

متن کامل

Edge-pancyclicity and edge-bipancyclicity of faulty folded hypercubes

Let Fv and Fe be sets of faulty vertices and faulty edges, respectively, in the folded hypercube FQn so that |Fv| + |Fe| ≤ n − 2, for n ≥ 2. Choose any fault-free edge e. If n ≥ 3 then there is a fault-free cycle of length l in FQn containing e, for every even l ranging from 4 to 2 − 2|Fv |; if n ≥ 2 is even then there is a fault-free cycle of length l in FQn containing e, for every odd l rangi...

متن کامل

Broadcasting on Faulty Hypercubes

In this paper we propose a method for constructing the maximum number of edge-disjoint spanning trees (in the directed sense) on a hypercube with arbitrary one faulty node. Each spanning tree is of optimal height. By taking the common neighbor of the roots of these edge-disjoint spanning trees as the new root and reversing the direction of the directed link from each root to the new root, a spa...

متن کامل

Edge-bipancyclicity of a hypercube with faulty vertices and edges

A bipartite graph G = (V ,E) is said to be bipancyclic if it contains a cycle of every even length from 4 to |V |. Furthermore, a bipancyclic G is said to be edge-bipancyclic if every edge of G lies on a cycle of every even length. Let Fv (respectively, Fe) be the set of faulty vertices (respectively, faulty edges) in an n-dimensional hypercube Qn. In this paper, we show that every edge of Qn−F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 105  شماره 

صفحات  -

تاریخ انتشار 2007